導語:5G時代巨大數據流量對于通訊終端的芯片、天線等部件提出了更高的要求,器件功耗大幅提升的同時,引起了這些部位發(fā)熱量的急劇增加。BN氮化硼散熱膜是當前5G射頻芯片、毫米波天線、無線充電、無線傳輸、IGBT、印刷線路板、AI、物聯網等領域最為有效的散熱材料,具有不可替代性。

本產品是國內首創(chuàng)自主研發(fā)的高質量二維氮化硼納米片,成功制備了大面積、厚度可控的二維氮化硼散熱膜,具有透電磁波、高導熱、高柔性、低介電系數、低介電損耗等多種優(yōu)異特性,解決了當前我國電子封裝及熱管理領域面臨的“卡脖子”問題,擁有國際先進的熱管理TIM解決方案及相關材料生產技術,是國內低維材料技術領域頂尖的創(chuàng)新型高科技產品。

“5G”一詞通常用于指代第5代移動網絡。5G是繼之前的標準(1G、2G、3G、4G 網絡)之后的最新全球無線標準,并為數據密集型應用提供更高的帶寬。除其他好處外,5G有助于建立一個新的、更強大的網絡,該網絡能夠支持通常被稱為 IoT 或“物聯網”的設備爆炸式增長的連接——該網絡不僅可以連接人們通常使用的端點,還可以連接一系列新設備,包括各種家用物品和機器。
公認的5G的優(yōu)勢是:
•具有更高可用性和容量的更可靠的網絡
•更高的峰值數據速度(多Gbps)
•超低延遲
與前幾代網絡不同,5G網絡利用在26GHz 至40GHz范圍內運行的高頻波長(通常稱為毫米波)。由于干擾建筑物、樹木甚至雨等物體,在這些高頻下會遇到傳輸損耗,因此需要更高功率和更高效的電源。
5G部署最初可能會以增強型移動寬帶應用為中心,滿足以人為中心的多媒體內容、服務和數據接入需求。增強型移動寬帶用例將包括全新的應用領域、性能提升的需求和日益無縫的用戶體驗,超越現有移動寬帶應用所支持的水平。

毫米波通信是未來無線移動通信重要發(fā)展方向之一,目前已經在大規(guī)模天線技術、低比特量化ADC、低復雜度信道估計技術、功放非線性失真等關鍵技術上有了明顯研究進展。但是隨著新一代無線通信對無線寬帶通信網絡提出新的長距離、高移動、更大傳輸速率的軍用、民用特殊應用場景的需求,針對毫米波無線通信的理論研究與系統(tǒng)設計面臨重大挑戰(zhàn),開展面向長距離、高移動毫米波無線寬帶系統(tǒng)的基礎理論和關鍵技術研究,已經成為新一代寬帶移動通信最具潛力的研究方向之一。
毫米波的優(yōu)勢:毫米波由于其頻率高、波長短,具有如下特點:
頻譜寬,配合各種多址復用技術的使用可以極大提升信道容量,適用于高速多媒體傳輸業(yè)務;可靠性高,較高的頻率使其受干擾很少,能較好抵抗雨水天氣的影響,提供穩(wěn)定的傳輸信道;方向性好,毫米波受空氣中各種懸浮顆粒物的吸收較大,使得傳輸波束較窄,增大了竊聽難度,適合短距離點對點通信;波長極短,所需的天線尺寸很小,易于在較小的空間內集成大規(guī)模天線陣。
毫米波的缺點:毫米波也有一個主要缺點,那就是不容易穿過建筑物或者障礙物,并且可以被葉子和雨水吸收。這也是為什么5G網絡將會采用小基站的方式來加強傳統(tǒng)的蜂窩塔。

所謂吸波材料,指能吸收或者大幅減弱其表面接收到的電磁波能量,從而減少電磁波的干擾的一類材料。在工程應用上,除要求吸波材料在較寬頻帶內對電磁波具有高的吸收率外,還要求它具有質量輕、耐溫、耐濕、抗腐蝕等性能。
1.1 隨著現代科學技術的發(fā)展,電磁波輻射對環(huán)境的影響日益增大。在機場、機航班因電磁波干擾無法起飛而誤點;在醫(yī)院、移動電話常會干擾各種電子診療儀器的正常工作。因此,治理電磁污染,尋找一種能抵擋并削弱電磁波輻射的材料——吸波材料,已成為材料科學的一大課題。
1.2 電磁輻射通過熱效應、非熱效應、累積效應對人體造成直接和間接的傷害。研究證實,鐵氧體吸波材料性能最佳,它具有吸收頻段高、吸收率高、匹配厚度薄等特點。將這種材料應用于電子設備中可吸收泄露的電磁輻射,能達到消除電磁干擾的目的。根據電磁波在介質中從低磁導向高磁導方向傳播的規(guī)律,利用高磁導率鐵氧體引導電磁波,通過共振,大量吸收電磁波的輻射能量,再通過耦合把電磁波的能量轉變成熱能。
1.3 吸波材料在設計時,要考慮兩個問題:
1)電磁波遭遇吸波材料表面時,盡可能完全穿過表面,減少反射;
2)在電磁波進入到吸波材料內部時,要使電磁波的能量盡量損耗掉;

軟磁性材料指的是當磁化發(fā)生在Hc不大于1000A/m,這樣的材料稱為軟磁體。軟磁性材料的剩磁與矯頑磁力都很小,即磁滯回線很窄,它與基本磁化曲線幾乎重合。這種軟磁性材料適宜作電感線圈、變壓器、繼電器和電機的鐵芯。常用的軟磁性材料有硅鋼片,坡莫合金和鐵氧體等。


不同的鐵磁材料磁滯現象的程度不同,磁滯回線水平方向越寬的材料,也就是磁滯回線面積越大的材料,其磁滯現象越嚴重。
磁滯回線面積寬闊,材料的剩磁和矯頑磁力都大,其磁滯損失嚴重,不宜于作交變磁場中工作的鐵心,而適合于作永久磁鐵,這種材料稱為硬磁性材料。
磁滯回線瘦窄,而面積較小,這種材料稱為軟磁性材料,它的磁滯損失較小,適于交變磁場工作。軟磁材料是電子工業(yè)中變壓器、電機等電磁設備所不可缺少的材料。
飽和磁感應強度Bs:其大小取決于材料的成分,它所對應的物理狀態(tài)是材料內部的磁化矢量整齊排列。
剩余磁感應強度Br:是磁滯回線上的特征參數,H回到0時的B值。
矩形比:Br∕Bs
矯頑力Hc:是表示材料磁化難易程度的量,取決于材料的成分及缺陷(雜質、應力等)。
磁導率μ:是磁滯回線上任何點所對應的B與H的比值,與器件工作狀態(tài)密切相關。
初始磁導率μi、最大磁導率μm、微分磁導率μd、振幅磁導率μa、有效磁導率μe、脈沖磁導率μp。
居里溫度Tc:鐵磁物質的磁化強度隨溫度升高而下降,達到某一溫度時,自發(fā)磁化消失,轉變?yōu)轫槾判裕撆R界溫度為居里溫度。它確定了磁性器件工作的上限溫度。
降低磁滯損耗Ph的方法是降低矯頑力Hc;降低渦流損耗Pe 的方法是減薄磁性材料的厚度t 及提高材料的電阻率ρ。在自由靜止空氣中磁芯的損耗與磁芯的溫升關系為:總功率耗散(mW)/表面積(cm2)。
軟磁性材料指的是當磁化發(fā)生在Hc不大于1000A/m,這樣的材料稱為軟磁體。軟磁性材料的剩磁與矯頑磁力都很小,即磁滯回線很窄,它與基本磁化曲線幾乎重合。這種軟磁性材料適宜作電感線圈、變壓器、繼電器和電機的鐵芯。常用的軟磁性材料有硅鋼片,坡莫合金和鐵氧體等。
1、電阻型損耗,此類吸收機制和材料的導電率有關的電阻性損耗,即導電率越大,載流子引起的宏觀電流(包括電場變化引起的電流以及磁場變化引起的渦流)越大,從而有利于電磁能轉化成為熱能。
2、電介質損耗,它是一類和電極有關的介質損耗吸收機制,即通過介質反復極化產生的“摩擦”作用將電磁能轉化成熱能耗散掉。電介質極化過程包括:電子云位移極化,極性介質電矩轉向極化,電鐵體電疇轉向極化以及壁位移等。
3、磁損耗,此類吸收機制是一類和鐵磁性介質的動態(tài)磁化過程有關的磁損耗,此類損耗可以細化為:磁滯損耗,旋磁渦流、阻尼損耗以及磁后效效應等,其主要來源是和磁滯機制相似的磁疇轉向、磁疇壁位移以及磁疇自然共振等。此外,最新的納米材料微波損耗機制是如今吸波材料分析的一大熱點。










一、產品概述 Introduction
對應于5G的低延遲、大容量、高速度的特征,其信號收發(fā)設備功率將顯著增大,由此而來的信號干擾也會增強,這需要電磁屏蔽材料效能的提升;5G通訊使用的電磁波頻段拓寬,這對材料的電磁屏蔽帶寬提出新的要求;同時也要滿足設備小型化超薄化的設計要求。

二、產品特點 Features

三、產品參數 Physical propterty data

四、應用場合 Main application


五、數據測試 Testing data
